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ABSTRA CT

Var ious types of pattern deforma ti ons are inves tigated from the syntac-

tic point of view and categorized into two major types: local deformations

and structural deformations. Random noise, distortion variations, and sub-

stitutions, of pattern primitives belong to the former; syntactic errors due

to pattern structuraL changes, such as primitive deletions and insertions,

belong to the latter. Every observed pattern can be regarded as transformed

from a pure pattern throug h these two types of deformations. An error—

correcting parsing scheme for local deformations optimum in the Bayes sense

is proposed. A corresponding recognition rule is then described, which can

be regarded as a hybrid classifier because it has utilized advantages of

both syntactic and statistical approaches to pattern recognition. When this

scheme is applied to string and tree l anguages wi thout structural deforma-

tions, it is shown that various known structure—preserved error—correcting

parsing schemes could be considered as special cases of this general scheme.

Two structure—preserved error—correcting parsers, one for string l anguages,

the other for tree l anguages, are also presented . Finally, further

researches concerning error—correcting parsings for structural deformations

and a complete error—correcting systems for both kinds of deformations are

suggested.
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1. Introduction

To recognize noisy or deformed patterns using the syntactic pattern

recognition approach, error—corr ecting parsing and classification techniques

using various decision criteria have been proposed [1—5 ,20]. Errors induced

on the primitives of noisy or deformed patterns usually are classified into

three types: substitutions, deletions, and insertions. If only substitu-

tion errors are considered, the error—correcti ng parser is said to be

structure—preserved . After an input pattern is parsed by a certain pattern

grammar , a quantitative measure, either deterministic or probabilistic , is

output by the parser to indicate a measure of possibility that the input

pattern is generated by the grammar . The decision criterion is then used to

classify the input pattern as belonging to the pattern class with an extreme

quantitative measure, eit her m inimum or max imum, depending on how the meas-

ure is defined . Two most widely used decision criteria are minimum—distance

and maximum—likelihood criteria , though others have also been proposed

[2,5].

Influenced by the lingui stic types of representation which only adopts

symbolic notations as terminals , most of the existing error—correctin g pars-

ing methods [1—4,20] use discrete symbols to represent structural pattern

primitives . However, it happens quite often that a primitive also contains

continuous semantic or numerical information useful for pattern discrimina-

tion purpose [5,6,7]. For such cases, obviously, these parsing methods are

not appropriate, because they can not utilize continuous semantic or numeri-

cal information.

To take care of both structural and numerical information simultaneous—

ly, a deformatlonal model for pattern primiti ves is Introduced in this re-

port. Based on this model , error—correc ting parsing and classification

- — — - - - - ~~—W~~--- 
-
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technique s using the Bayse decision rule are then proposed. Various known

error—correc ting parsing schemes and classification rules are compared with

the proposed techniques. A compLete illustrative example is given to show

the applicability of the proposed model and techniques.

I
— ~~~~b 1._.5~~~~~

_
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2. A Deformationat ModeL

In this section, we give a formal description of basic concepts for im-

ages, patterns, subpatterns, and primitives , which we will ca ll structural

entities, used in syntactic pattern recognition from a broader point of

view, and based on these concepts, we propose a deformationat model which

will serve as a basis later for developing a Bayes error—correcting recogni-

tion system. Essentially, these concepts are described as general as possi-

ble so that they can be applied to a variety of pattern l anguages, and in

such a way that discrimiration between syntactic and semantic informations

available from the structural entities is emphasized . In particu lar, exam-

ples are given for string and tree l anguages for illustrative purpose.

2.1 Basic Concepts

An observed image usually can be considered as deformed from a pure

image. For example, a smooth shape in a picture may become noisy after it

is digitized . Here the original shape is the pure image and its noisy ver—

sion is the observed image. When similar pure images are clustered as a

pure pattern class , there corresponds a set of observed images each of which

we will call as an observed pattern. In practical applications , grammars

are often inferred, either from pure or from observed patterns, to recognize

observed images. In some simple cases, the deformations, such as noises,

existing in observed patterns can be eliminated by intensive preprocessing

such as thresholding . But in general , they can not be eliminated entirely.

This is why error—correcti ng parsing s are necessary.

Before a class of patterns can be described by a pattern grammar, each

pattern is decomposed into smaller and simpler structural units cal l ed

primitives. Primitives should be chosen properly so that the resulting

descriptions of the patterns using grammars can be simple (7]. We cal l the

- .~~~ - . - - - - - 
: 
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description of a pattern using some fixed primitives as a structural

representation , which is, for string l anguages, a string (representation )

consisting of symbols each of which corresponds to a primitive , and is , for

tree languages, a tree (representation ) with each of its nodes corresponding

to a primitive. C~- course, pure primitives , pure patterns, and pure struc-

tural representations also have their corresponding observed primitives , ob-

served patterns, and observed structural representations , respectively.

2.2 Primitives -

A detailed study of various kinds ‘of primitives used for pattern

descriptions [7—9] reveals that each primitive may contain two kinds of in-

formation, namely, the syntactic information and the semantic information.

The syntactic information gives a structuraL description of the primitive ,

and the semantic information provides the meaning or numerical description

of the primitive. To be more specific , two examples are given in the fol-

lowing for illustrative purpose.

I. Primitives for string languages ——— A primitive for string

languages usually is simply a symbol. Different symbols are used to

represent different primitives , such as an arc, a straight line segment, an

angle, etc., for describing shape boundaries. But it happens quite often

that we need more information involving numerical measurements to describe a

primitive more accurately. For example , we may want to discriminate two arc

primitives by their lengths and curvatures. Then, the syntactic information

contained in these two primitives is the arc structure, and the semantic in-

formation is their respective lengths and curvatures. You and Fu [9] used

two kinds of primitives — curve segment primitives and angle primitives — to
describe shapes. The first one is a curve segment with 6 numerical features

t~ describe its direction , l ength, curvature, and symmetry. The second one
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is an angle with one feature to describe the angle amplitude . These two

kinds of primitive serve as a very good example for illustrating the above

concept of primitive information.

II. Primitives for tree l anguages ——— Similar ly, a primitive for tree

l anguages may have any ki nd of primitive structure and various kinds of nu-

merical measurements on the primitive. For example , Lu and Fu [10] used a

pixel with it gray value as a primitive to set up a tree model. Then the

primitive structure is a pixel and the semantic information is its gray

value .

Now we are ready to give a formal description of a primitive. We con-

sider a primitive a, either pure or observed, as a 2—tuple

a = (s,x)

where

s is a syntactic symbol densting the primitive structure of a, and

x = [x i,x2,...,xm] is an m—dimensiona l semantic vector with each x
~ 

Ci =

1,2,..., m) denoting a numerical measurement or a Logical predicate,

and m > 0. When m = 0, or no semantic information is available , set

x = • (empty vector).
A similar idea was also proposed by Shaw [21] and described in Fu [7].

Two remarks are in order.

I. Influenced by the lingui stic represenations, the primitives used in

syntactic pattern recognition tend to be restricted to symbolic notations

which essentially only give syntactic information . Even when a continuous

type of numerical information, such as random noi se, is included in the

primitives , it is often thresholded into discrete numericats which then are

_ _ _ _ _ _  —— — -
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denoted by a finite number of primitive symbols. Such an approach not only

decreases the discrimination accuracy due to the numerical thresholding but

also increases the number of grammar rules due to the increase of the number

of primitives (i.e. terminals ). With a primitive described as above, such

weaknesses could be eliminated as will be seen later.

II. Since a primitive contains two parts of information , we obtain a

great deal of flexibility in selecting primitives. This point is also em-

phasized in [6]. Any structural unit can be selected as a primitive , and if

more properties are needed to specify the primitive , numerical or semantic

information can be invoked. Furthermore, with semantic information separat-

ed from syntactic information in a primit~”e, a very systematic deformation—

al model can be developed for optimum error—correcting parsing schemes which

will be described in the following sections.

2.3 Pattern Structures

To transform a pattern into a structural representation using primi-

tives as constructing units, we need a fixed constructing rule which we will

cal l a pattern structure. For example , to convert a shape into a string

representation with arcs, line segments, angles as primitives , we have to

know the starting primitive and the direction the shape boundary should be

traced . So a string structure is needed. Similarly, a tree structure is

needed to convert the set of primitives of a given pattern into a tree

representation (for example, see [5,19]). So a structural representation of

a pattern can be considered as the arrangement of primitives according to a

4ixed pattern structure. Usually, in practical applications , the number of

pattern structures used by a pattern language is finite and not too Large.

In some cases, there is even only one such structure used for all structural

representations (5,10]. For string l anguages, string s with different
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lengths are of different string structures, and for tree l anguages, trees

with different number of nodes or different connecting branches are also of

different tree structures. But the number of primitives existing in a

structural representation is not the only discriminant factor of pattern

structures. In some cases, different implicit relations implied by the con-

catenations in a string or by the branches in a tree also define different

pattern structue s, althoug h such relations may be represented explicitly by

terminals by some pattern l anguages such as PDL and PLEX languages [21,22).

Now we can say that a pattern class consists of a set of patterns each

of which in turn can be transformed into a structural representation using a

set of prespecif ied primitives (and relations ) according to one of some

fixed pattern struc tures for this pattern class. These structural represen-

tations can then be used to infer a pattern grammar to characterize this

pattern class. So each terminal used in the grammar is.just a primitive

which can be described by a 2—tuple consisting of a syntactic symbo l and a

semantic vector as defined in Section 2.2.

2.4 The Deformational Model

From previous discussions, it is clear that a pattern or its structural

representation w can be fully characterized by a 2—tuple w = (S,A) where

A = {a~Ii = 1,2,..., n} is a set of primitives used in w and S denotes the

pattern structure of w together with implicitly assumed relations among the

primitives. For discussion convenience in the following sections, we assume

that the subscripts for a
~ 

are numbered according to some fixed order which

is determined by the pattern structure S; when S is fixed, then this order-

ing is also fixed.

Given the structural representation w = (S,A) of a certain pure pattern

with pattern structure S and primitive set
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A = {a1 la~ 
= (s~,x ,), ~ = 

~~~~~~~~~~~~~~~~ 
N~ > 0, i=1,2,..., n},

the structural representation of its corresponding observed pattern

= (S’,A’), with pattern structure S’ and primitive set

A ’ C a ’1 la ’~ = (s’
~
,x ’

~
), x ’

~~
(x ’
~ l,

x ’l2,...,x ’~N, 
) , N’ 1 > 0, i=1,2,..., n},

can be considered as being transformed from w throug h a series of deforma-

tions. Our deformat ional model categorizes all possible deformations m t
two major types: structural deformations and local deformations.

I. Local deformations ——— If S = S’, but for some i, i = 1,2,.. .,n,

a. � a’., then we say ~~
‘ is deformed locally from c~. In another word, a

local deformation induced on a pure pattern preserves the entire pattern

structure but deforms some primitives locally . So a local deformation

is also called a structure—preserved deformation. With respect to

string s, this simply means a l ength—preserved deformation.

II. Structural deformations —— — If S � S’, then we say that w ’ is deformed

structurally from ,~. Various types of structural deformations, such as

insertions, deletions , transpositions, and permutations [11,2,12], have

been defined according to various kinds of structural difference between

S and S’. -

In this report, we deal only with local deformations, leaving structur—

at deformations for further investigations.

2.5 LocaL Deformations

A deformation induced on at least one primitive of a given pure pattern

is cal l ed a local deformation . Let a1 = (s 11x 1) be the pure primitive de—
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formed, where

=

and c1 = (t1,.z~
) be one of its observed versions, where

z~ = (zll,z12,...,zlN , ).
•1

At least two types of local deformations can be identified as following :

I. Syntactic local deformation ——— This is the case when t. � s~. In

another wor d, when the primitive structure is changed to another one, a

syntactic local deformation is induced , which usually is cal l ed a

substitut ion error.

Z. Semantic local deformation ——— When the local deformation on a.

does not change the primitive structure but only corrupts the semantic in-

forma tion, i.e. when t.~ = S
i 
but z1 � x

~
, then it is called a semantic local

deformation. If every primitive used by a pattern has an identical primi—

tive structure, then every local deformation is semantic.

In general , we can consider a Local de4ormation as a two—step transfor-

mation from a
~ 

= (s~,x 1
) to c~ = (t1,.z1

) by the following way:

(s1,x,) synt.loc.de1~ sem.loc.def~ 
(t 1,21

)

t 1’
pure primit.a~ semi—pure primit .b. observed primit.c.

where b1 = (t,,y1), cal l ed a semi—pure primitive , is created to denote one

of the syntactically local—deformed versions of (s1,x 1
) with y1 being a

representat ion semanti c vec tor for t1, which is only created for explanatory

convenience and does not have much practical use later in our derivation of

-- --~~~--- - - -._ _-- --~ - --------
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parsing procedures. t When t .~ = s~, then y~ 
= x1, and only semantic local de—

formations happen in the two—step transformation .

Let A = {a
~ Ia 1 = (s1,x 1

), 1 = 1,2,...,n} denote all the pure primitives

used in a pure pattern. Though each a1 can be deformed syntactically into a

set of semi—pure primitives Dai 
= {b~~Ib 1~ = ~~~~~~~~ j =

each deformation a1 + 
~~ 

may occur with a different probability. So there

exists a conditional probability function p defined on Da for each a
~ 

such

that P(b1~ Ia 1) = P(t~~Is 1) is the probabiLity for s.~ to be deformed into

t~~, j = 1,2,...,k1. Similarl y, since each ~~ can be deformed semantically

into a set of observed primitives Db = {cijk kijk = (tlJ ,zJJ k
),

Z
jjk R1~}l where ~~ is a range for z

~Jkl which may consist of a finite

number of discrete elements or of an infinitive number of continuous ele-

ments, we can define a conditional probability or density function q on Db
1)

such that ~(z1~~ lb 1~ la1) = ~(z 1~~ Jt 1J_ S 1) is the probability or density for

b1~ = (t 1~ ,y1~
) to be deformed into C i jk = (t ijlzijk). Therefore, from a

probabilistic point of view, a Local deformation from a1 = (s 11x 1) to

c
~~k = (t ijl zijk) now can be interpreted as following :

p (t~ .Is 1) q(z1.~ It~ .,s~)a = (s 1,x 1) synt.loc.def.*bij = (t
~~~Y 1~

) sem.loc.de~~~~
C ijk = (t i) .z i)k )

~

• where p (.Is.) is the conditional probability function given a. (or s1) de—

fined on Da _ and ~(.I t1~,s1) is the conditional probability or density

function given a
~ 

and b1 . (or s1,t~
.) defined on Db . We also assume that

.1 1 •11
a 1 ~ 

Da , and b1~ * Db1 ii
To be more specific , we give two examples for the semantic local defor—

mations, assuming no syntactic local deformation is involved —— — that is,

tSometimes for normaLly distributed z1, y~ 
can be conven ient L y chosen to

be the mean value of z~.

- -  - --- - - - -  —~~~~~ ----

— ~~~~~~~~~~~ — 
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q(z 1. Is 1)
a 1 = (s 11x 1) sem.Ioc.def.~ 

C .• = (s
~~i.Z~~~

)

I. Random noise ——— This is the case when the semantic vector x. in a

pure primitive a1 = (s1,x 1) is subject to random noise corruption . So the

deformed or noisy version of x 1, denoted as ~~ 
above, is actually a random

vector z.. with continuous density function q(~~s1). If the noise associat-

ed with 
-
~~~~~~ 

is normal ly distributed with zero mean, then x~ in fact is just

the mean vector of z~~, or x 1 = E-Cz1~}. -

II. Distortion variations — —— In some cases , x .~ may be deformed into

only a finite number of observed versions z1~ . Then q(~ fs..) above is just a

discrete probability function defined on all possible z1 .

Back to our discussion of two—step local deformations, given a pure

primitive a1 = (s
~
,x 1
), the probability that it is deformed Locally into an

observed primiti ve C lik 
= (t lJl zl~ k) now can be computed as

‘ r (c.. k la. )  = t im P(t 1~ Is 1) . 
~~~~~~~~~~~~ • Az~~~

u k

if q (.Jt..,s~) is a continuous density function, or simply

= P(t
1J I5~)~(z1~~ It 1Jl s,)

if q (e~~~t..,,5.) is a discrete probability function . And given a pure pattern

= (S,A) with A = {a1~ a 1 = (s 11x 1), i = 1,2,.. .,n}, the probability that o~

is deformed local ly  into a structure—preserved observed pattern w ’ = (S,C)

with C = (c1 Ic~ 
= (t 1,~ 1), a 1 Loc.de f~

Ci ~ I 1,2,... ,n} is

n
P(u’~w) = fl .y(c

1Ia~
)

1=1

-___ • - _ _ _ _ _ _ _ _ _- - ~~~- —~~~~-—-

_ _ _ _ _ _ _  S - 
••

~~ 
- . 

~~~~~~~~~
-
~
- - — - —



— 1 4 —

= fi tim P(t1 Is 1)q(z~ It 1,s1) ~~u 1

when q( )t1
) is continuous, or,

n
P(w ’ Iw )  = fl P(t 1Is 1

)~ (Z~ It 1~.5~) ,
i=1

when q(.~ t )  is discrete, if each a. is deformed independently into c 1, I =

1,2,...,n. such independence assumption for local deformations of primi-

tives was also considered by Grenander £13], Kovalevsky [14], and Fung and

Fu (3].

_

- — 
• - -_ . — - —

‘. - - • rn  - ~~~~~~~~ . —— ~~- -
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3. Bayes Structure—Preserved Error—Correct ing Parsers

In this section, we derive structure—preserved error—correct parsers

(SPECP) optimum in the Bayes sense for locally deformed patterns. Given a

pattern class consisting of various pure patterns which can be generated by

a pattern grammar , we can, from statistical point of view, consider each

pure pattern together with a~ l its possible loca l ly  deformed versions as a

distinct subclass of the given pattern class. Then the SPECP to be derived ,

which we will cal l Bayes SPECP, are optimum in the sense that they are, in

addition to possessing syntactic parsing capability, just Bayes subclass

classifiers which assign each given observed pattern, according to Bayes de-

cision rule, to a subclass whose pure pattern has a maximum probability to

be deformed into the given observed pattern.

3.1 Statistical Considerations

Given an observed pattern w = (S,A) with A = Ca
~Ia~ 

= (s 1,x~
), x

~ 
=

(x il,xi2,...,xiL
), I = 1,2,...,n} of a certain pure pattern class C which

consists, for simplicity, of only two pure patterns = (S,B1
) and

w2 = (S,B2) with B1 = {b~ Ib~ = (t~,y~), y~ = (y~1,y~21...,y1 
~~~~ 

i =

1,2,..., n} and B2 = {b~ Jb~ = (t~,y~), y~ = (y~1,y~2,...,y2
2

)
~ i =

1,2...,n}, we want to assign w to one of the two pure pattern su~classes

and according to the statistical hypothesis testing theory. Using the

Bayes decision rule, we get, according to the analysis for the deformational

mode l in the last section under the independence assumption for local defor—

mat ions,

P(uiIw ) 
W
I

1 decide ,W itIi ) >

or
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P(W 1w 1)P(w 1
) 

= F~ 
Y(ai Ib

~)1 
P(u1~

P( w Iw
2

)P(~ 2
) 

Li=1 Y(ai Ib~)J 
P(w2

)

In p(s~It~)q(x1 Js 1,t~)] P(w 1
) 

> .

ifl 2 2 ’ P( ) <  I decide w +

L 1 ’  P(5 iIt .)~ (x . Is . , t .)J W
2

or taking logarithms ,

~~ 
£tn p (s1 It~

) + tn q(x1 Is~,t~)] + tnP(w1
)

~ 

[tn p(s
~

lt
~
) + 9..n q (x.Is.,t~)] + tnP(w2

)

decide ~ +

where P(w11W ) , P(w 11w ) , P(w1
), P(w2

) are posteriori and a pri ori probabili—

ties for pure pattern subclass and w 2, and p(’~t~), ~ ( d I s ~ ,t~ ), j = 1,2,

are as defined in the last section. When the pure pattern class C consists

of more than two patterns, the above decision rule can be extended as fol-

lowing . Let A
1 
be such that

— In A .  = — ~~ [tn p(s 1It~
) + ~n q(x 11s 1,t

3 )] — tnP(w .) p
i=1 I

j = 1,2,..., M, with P1, either finite of infinite, being the total number of

pure patterns belonging to C, then decide w uk if k is such that
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— In A~ = mm (— tfl A. ) .
j=1,2,.. .,M

We cal l the term —Ln A~ the Bayes distance B(u~w~) from A to w~~, and the

term —In A k the minimum Bayes distance B(w,C) from w to pure pattern class

C.

With Bayes distances defined as above, the Bayes SPECP, constructed

from the pattern g rammar Gc 
for a given pure pattern class C, is used to

search for a given input observed pattern ~ a pure pattern Wk accepted by

with a minimum Bayes distance B(W,wk
) = B(w,C) during the error—correcting

parsing . So our problem now fs reduced to how to compute the Bayes dis-

tances —In A~ during the parsing procedure. Since the parsing is done on

each primitive at l east once, there is no prob l em in obtaining the first
n

term £ (p(s1~ t1.) + In q(x~ Is .,t~)] in —tn A., as will be seen later. But
1=1 1 1

how to get the a priori probab ility P(u.) for the pure pattern during the

parsing procedure is on the contrary not so obvious. The sol ution is to use

a stochastic grammar for the pattern class C.

3.2 Stochastic Grammars for Computing Pattern ProbabiLitief

Stochastic grammars have been introduced to take care of noisy patterns

and also to specify the probability of occurrence for each pattern accepted

by the pattern grammars £7]. The latter property is exactly what we want

for computing pattern probabilities P(u~).

To be more specific , a stochastic grammar is a grammar each of whose

production rule s is associated with an occurrence probabilit y. When a sto-

chastic pattern grammar is used to generate the structural representation of

a given pattern, a pattern occurrence probability is also generated simu l—

taneously, which is the product of all probabilities associated with the

production rules used in deriving the stru~tural representation. For de—

— -  -— — —----~~~~~~~~~~~~~~~ 
- -

- -- -S .  -~~~
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tails , see Fu £7]. And for inference of production rule probabilities , see

Lee and Fu [15]. Here we only give the basic notations and definitions of

stochastic context—free grammars and stochastic tree grammars [7].

Definition 1. A stochastic context—free (string ) grammar is a 4—tuples

G5 = (V N,VT,Ps,S), where

VN is a finite set of non—terminals ,

V1 is a finite set of terminals ,

S is a start symbol ,

P5 is a finite set of stochastic production rules, each of which

is of the form

pi ~A 1 ..- 
~i1’ 

j = 1,2,..., n1 , i = 1,2,..., t

where A 1 
t VN, 

~~ 
e (V T U VN

)*, n
~ 

is the number of distinct production

rules with A
~ 

at left—hand side, I is the number of nonterminats , and ~~ is

the probability associated with this production. Furthermore ,

n.

O < p 1 . < I  and Ep 1 . = i .
I j=1 ~

Definition 2. A stochastic context—free (string) grammar G5 is in Chomsky

normal form if each of its production rule is of the formm

PAC
A >ae or A - ’ a

where A, B,C~t VN, a ~ V1.
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Definition 3. A stochastic tree grammar over <V11r> in its expansion form

is a 4—tuple Gt = (VN U V1, r ,P ,S), where

VN, V1, S are the same as defined in Definition 1,

r: VT • N, the set of nonnegative integers, is a rank function denoting the

number of direct descendants of a node with a symbo l in VT as its l abel , and

P is a set of stochastic production rules, each of which is in the form

pu Pu
X. + x or X. . x

X. ... X.i i ur(x)

where x 
~ 

VT, Xl, ~~~~~~~~~~~ VN, 1 < j < n1, 1 .~~ i I ~~ ~~~‘ 
I, are

the same as defined in Definition 1, and

n1
0 < p

~
. < I and E 

~ 
= I

j=1 ~

3.3 Bayes SPECP for String Languages

We describe in the following a Bayes SPECP for context—free string

l anguages. Given a stochastic context—free string grammar G~ = (V N,VT,fs,
S)

for a pure pattern class, assume that the terminal set V1 = {a,1a 1 
=

(t
~
,w
~
), I = 1,2,..., t} contains all possible pure primitives used by the

pure patterns. For each a., i = 1,2,..., t, l et p( 1a 1
) = p( 1t 1) be the

conditional probability function defined on Dai 
= =

a1 syn .loc.def buj~ 
j = l,2,..,ku}, and q( Ia 1,b1~

) = q ( . I t u )  be the

conditional probability or density function defined on Db 
= {c1~ kIc

~~k 
=

(u ij~
zjjk)~ 

b1~ sem .loc .def.~~ijk’ 
C ijk ~ ~~~~ Let

- 

-

~~~~~~~~~~~~~~~~~~~ 
T. ~~~~~~~~~~~~
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~V1 = U [U  Db 
]

i=I j=1 ij

denote all possible deformed primitives , and note that V1~~~V1. The algo-

rithm for the Bayes SPECP is a modification of the Cocke—Yonger—Kasami pars-

ing scheme [16], which essentially tries to construct a parse table T for an

input observed string representation y, and then parses through the table to

obtain a pure string representation x with a minimum Bayes distance BCy,x).

The table T consists of entries t
11 , 1 < i I n, 1 < j I n—i+1, where n is

the l ength of string y. Each t~ is a set of triplets (A ,d,k), where A 
~ 

VN
is an intermediate nonterminal used in deriving x, d ~ (0,~) is part of the

Bayes distance, and k specifies the product rule used with A at the left—

hand side.

Algorithm 1. Bayes Structure—Preserved Error—Correcting Parser for String

Languages

Input: A stochastic context—free string grammar G5 = (VN,VT,P ,S) in Chom—

sky nor~’al form wi t hout f —productions, and an observed string representation

y ~ ~~~ y = ~~~~~~~~ c1 = (s1 x 1), i 1,2,..., n.

Output: A pure string representation x accepted by G5 with a minimum Bayes

distance B(y,x).
p

Method: Put all production rules into order and let k: A + ci denote that
p

A • a is the kth rule in

Step Construct t~1 for each i, i = 1,2,...,n. Let A ~ VN. For every
I

k~: A . a
3 

in 
~~~~ 

j = 1’2’~
•
~’~A’ where a3 = (t

1,
w
3
), nA is the number of

production rules each with A on the left—hand side and a terminal on the

right—hand side, let

_ _ _ _ _• - - - ~~~~ - - - - -~~~---- • -— -—- • - --- --- - ------ ——- ~ 
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d1~ = — [In P(s
~It 1

) + In ~(x ,lt~,s~) + In p~] ,

I = I,2,..., n. Then set 
-

= {(A, d1~
, k5)ld 1~= 

mm d1~ , A ~ VN
}

I— , ,...,nA

Step 2. Construct t
13~ ~ 

= 2,...,n, inductively. Assume that t~~, has been

computed for all i, 1 < i < n , and for all j’, 1 < j’ < j. For every
Pj I

k~: A -, B
3 
C
3
, j = 1’2’••~’~A’ where nA is the number of production rules

with A on the left—hand side and two nonterminals on the right—hand side, if

there exists some m, 1 < m < j, such that (B~~e.11h~1
) f t

~ 
and

(C.,e. ,h. ) € t. . , let e.. = e. + e. — tn p.. Then set) j2 j2 i+m ,j—m ,j ji j2 j

t.. = ((A,e1~
,k
~
))e1~ 

= mm e~ , A ~ VN
}

j=1,2,. “‘PA

Step 3. Repeat Step 2 until t.~ is computed for all 1 < i In and

1 < j ~ ’r -~—i+ 1.

Step 4. When the entire table 1 is completed , exam entry t ln• If there ex—

ists a triplet (S,d,k) in tin for some d and k, then set 
B(y,x) = e d, and

the desired pure string representation x can be easily traced out from the

parse table T, starting from the kth production rule. If no (S,d,k) exists

in tin, then input observed string representation y is not structure—

preserved; set B(y,x) = 0.

3.4 Bayes SPECP for Tree Languages

Using the minimum—Bayes—distance criterion again, we propose a Bayes

SPECP for tree languages in the following . Given a stochastic tree grammar

= (VNUVT,r,PS,S) over <V1,r> in its expansive form, let V1,

P( Ia~
) = p(~~t1), ~~~~~~~~~ = ~(‘It 1 1u1~)1 Da~~ 

Db ,  and V1 be all the

-v - 
~~~~~~~~~~~~~~~~~~~ 

- - - . - - - .  
- — - 

~~~~~~~~~~~~~~~ 
- -4
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same as those defined in Sec. 3.3. The algorithms for the Bayes SPECP fol-

lows the concept of tree automata [17], and is a backward procedure for con-

structing a tree—like transition table T for an i nput observed tree

representation 8. Let the tree structure (i.e., the tree domain) of B be

denoted as D8, then corresponding to each node b in DB is an entry tb in 1,

which consists of a set of triplets (A ,d,k), where A ~ VN is a candidate

state for node b, d is part of the Bayes distance, and k specifies the pro-

duction rule used with A at the left—hand side.

Algorithm 2. Bayes Structure—Preserved Error—Correcting Parser for Tree

Languages

Input: A stochastic tree grammar G5 
= (V

NUVT,r,PS,
S) over <VT,r> 

in its ex-

pansive form, and an observed tree representation B with 8(b) = (Sb,xb
) as

its observed primitive at node b, (sb,xb) f

Output: A pure tree representation a accepted by G5 with a m-i r,inum Bayes

distance B(8,~i).

Method: Let tb.i denote the set of triplets corresponding to the ith descen-

dant of node b.

Step !• For each node b in a such that rCB(b)] = 0, add to tb a t i  ip Ie~

(A ,d,k) with

d = — [In p(sb lt k) + In q(x~ lt~,s~) + an

if

A~~ ak

with ak = (t k,W k) is the kth production rule in P5.

— 5 -  -. - - - - 
- ~~~~~ - - - - 

— 5- — -~~~~~~~~~~~~~~~~ 
—

- 

- 
~~~~ -5 •

~~~ 

—
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Step 2. For each node b in B such that rEB(b)] = N � 0, add to tb a triplet

(A ,d5,k) with

d5 
= — [In p(s

b lt k
) + an ~(x~ It~,s~) + Ln

+ d 1 + d 2 + ... + d N

if 
-

A . ak
/ \

with ak = (tk,wk
) is the kth production rule in and (A 1,d1,k1

) 
~ ~~~~

(A 2,d2,k2
) f ~~~~ ,. •., (A N,

dN,kN) f

Step 3. For any two triplet (B1,d1,k1
), (B2,d2,k2) in each tb~ delete th~

former if d
1 > d2, or the latter if d1 < d2.

Step 4. Repeat Steps 1—3 until all nodes in B have been processed.

Step 5. Exam t0, the root entry of the transition table 1. If (S,d,k) ~ t
0

for some d and k, then set B(8,a) = e d, and the desired pure tree represen-

tation a can be easily traced out from 1, starting from the kth prooj :tio~’

ru le in If no (S,d,k) exists in t0, then the input observed tree

representation B is not structure—preserved ; set B(B,a) = 0.

3.5 Comments on Various SPECP and Least—Square—Error Distance Criteria

Fung and Fu (3] have proposed a maximum—likelihood SPECP fo~ ~~~~ i . i y

L anguages, but the grammars used are nonstochastic , so their SPECP is j t..~t a

suboptimum one under the assumption that all pattern subclasses occur -~~th

an equa l probability. SPECP using stochastic grammars has been proposed by

~ and Fu [18], Lu and Fu [10,20], and Thompson [23, but from the view

- - - - - - -_ _- - 

55 -
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point of our deformational model , their SPECP for substitution error only

takes care of syntactic local deformations, and so L imit their applicability

to pattern classification prob l ems where the semantic information , especial-

ly when it is continuous, is contained in the pattern primitives for

discrimination purpose, Of course, these SPECP still can be used to handle

continuous types of semantic information by thresholding them into finite

disc rete cases, but obviosuly this will decrease the error—correcting capa-

bility of the SPECP, as mentioned previously in Sec. 2.2, and as will be

shown by an example in Sec. 4.1.

Nex t, SPECP for string and tree l anguages using the minimum—distance

criterion have also been proposed (1,4]. In addition to being limited to

syntactic local deformations, these SPECP are statisticall y optimum only

under very special conditions, although they are convenient and important in

practical applications when deformation probabilities or density functio’~..

are difficult to infer.

Finally, we propose in the following a new criterion , namely, the

least—square—error (LSE) distance criterion for the SPECP, which is a spe-

cial case of the minimum—Bayes—distance criterion but is useful for semant ic

local deformations.

It happens sometimes that the observed semantic vector in a p rimitive

is normally distributed , especially when it is computed wi tr~ randoni- o ~s--..

Assuming that no syntactic local deformation involves, we want to derive th~

Bayes distance between a pure pattern w = (S,B) and one of its normall y ~~~~~
-

formed observed patterns, ~‘ = (S,A). If A (a
~ Ia~ 

= (s 1,x 1),

= (x ll,x12....,x~N), 
1 = 1,2,... ) and B = (b.jIb~ 

= (s•,w~’,

W i 
= (w .j1,w12,...,wIN), i = l,2,..., n}, and assume the following conditions:

- S - - •~~S~ - .  - -- ~~ - --~~~-- -
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(1) Component random variables x~~ of x 1 are all independent with

mean ~~~ j = 1,2,...,N. An example for this case happene

when every x .. is corrupted with random noise with zero mean .

(2) x~ is distributed according to the following normal density

function

f. . (x..) = 1 EXP E- 1 ~ 
-

11 •I) 

~~~~~~ 
L ~ J

(3) Pure pattern ~ has the same probability to occur as any other,

so that P(w.) is a constant for every pure pattern w
3
.

Then we get the Bayes distance from w ’ to W as

= — Zn A

n
= — E (an p(s1 Js.) + an q(x1~ s1 s1

)] — In P(w)
1=1 -I

n N
= ~~ (~~ an f..(x..)) — an P(w)

1=1 j=I ~

= K + [ I ii + an a
~~
]

1=1 j=I ii

where K is a constant, and as far as discrimina t ion i s conc erned, we c-a . de-

fine the normalized square—error distance as
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B1
(w ’,w) = E ~~ (( 13 13 )

2 
+ 2~ni 1  j 1  1]

and the (unnormalized) square—error distance as

= E (x u~ 
— w1~

)2

i 1  j 1

which is vaHd under a further assumption that all o~. = I. A SPECP using

the normalized or unnormalized Least—square—error (LSE) distance criterion

is cal l ed a normalized or unnormalized LSE SPECP. These two kinds of LSE

SPECP for tree l anguages have been used by Tsai and Fu [5] for the segmenta-

tion and recognition of textures corrupted with random noise, and the

results show their applicability with the normalized LSE SPECP better than

its unnormalized version . 

-* - -- - • ~~~- - - -  
5 - - - . - -. . _~~~~~~-~~~~~~~ •~5• —
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4. Bayes Error—Correcting Recognition System — A Hybrid Pattern Classifier

Given m pattern classes C
i~

C2~• • •~
Cm of pure images and their pattern

grammars G1, G2,..., Gm~ 
after a given input observed pattern w is parsed by

all the Bayes SPECP of the grammars, we get a set of mini mum Bayes distances

B(w,C1), B(u,C2),..., B(W
~
Cm

)_ Actually, these distances are just the nega—

tive logarithms of the conditional probab ilities or densities of given

that ~ ~ C1, or

p(wIC1) = EXP[- B(w,C
~
)] ,

I = 1,2,.. .,m. Our classification problem is to assign w to one of these m

c l ass es, which has a highest possibility to accept w as its observed pat—

tern.

Again, we can apply the Bayes decision rule to get

P(C
~
Iw) = max P(C.Iw) decide w . C~ ,i 1 ,2,..., m

or

P (wIC
~
)P(C

~
) = max p (WIC.)P(C.) decide ~ + C~ ,

where P(C1) is the a priori probability for pattern class C
~
, i =

We call this intercLass Bayes classifier together with the intraclass Bayes

SPECP a Bayes error—correcting recognition system, compared to the

maximum—likelihood classifica tion 
~Lstem set up originally by Fung and Fu

(3]. Such a Bayes error—correcting recognition system essentially has also

S been proposed by Lu and Fu (20] and Fung and Fu [18], but, as mentioned in

Section 3.5, the error—correcting capability for substitution errors of

their system can only take care of syntactic Local deformations. The pro—

- - • - - - - - •

~ 

-_ _  - -- _
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posed system here can be considered as a generalization of theirs. Note

that in the proposed system, the Bayes decision rule has been used twice for

recognition of observed pattern primitives and for classification of the en-

tire observed pattern, and SPECP are used to perform the stochastic syntax

parsing s of input pattern structural representations. So the recognition

system can be regarded as a hybrid pattern classifier because advantages of

both syntactic and statistical pattern recognition technique s have been

utilized .

Computational l y, this system requi res more computer time in computing

the Bayes distances during parsing if both syntactic or semantic Loca l de-

forma ti ons are invo l ved, but it saves some computer time by avoiding thres—

holding continuous semantic information existing in the primitives .

Compared with the syntactic recognition approach using stochastic gram-

mars only (7,15], the proposed deformationat scheme can 1w regarded as a

special type of stochastic transformational grammars which is .~xpected to

handle complex noisy input patterns where simple stochastic grammars may not

be adequate to apply £3]. •

4.1 An Il lustrative Example

A complete example for string languages is given in this section to i t —

ustrate the applicability of the proposed Bayes error— correrting r- ’-~~~~ ui-

tion system and its superiority to other error—correcti ng systems which han—

dIe continuous semantic information by thresholding it into finite discrete

cases.

Assume that we have two pure pattern classes. One pattern class C,~

consists of two equi l ateral triangles ~~~ w12, as shown in Fig. 1(a), and

the other class C2 consists of two other different equi l ateral triangles

021, w22 as shown in Fig. 1(b). The primitives used which are fixed— L ength

•.s-.-.--—,—..--.•.• - .5 ________________________ — ~~~~—~~---.——.--
,-.—~~~

..- ---55 . - 
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tine segments are shown in Fig. 1(c).

a3 

~~~~~~~ ~~~~~ 
) 

- ~~~~~~~~~~~

a
3 

~~ 
b
3 /~\

b2 

a2 
~13 

--

b~~~~ 

~ ~~~~~ 
W22 ) b1 b~

~-i~.1(a) L 1g.1(b) i~ig.1(c)

A lso assume the following probability vaRies: P(C
1
) 0.5, P(C 2

) = 0.5,

P(W
111C 1

) = 0.60, P(w 12 IC 1
) = 0.40, P(co 21 1C 2

) = 0.80, P(u22 IC 2
) = 0.20. Two

stochastic pattern grammars G1, G2, consistent with these probabilities for

C1, C2, respectiveLy, are as following:

= (VN1,VT1,Pl,SI
)

VNI = CA,B,C,D,A1,B1,C1,D1}

V11 = {a1,a2,a3
}

P :1 0.6
S • AD (1)

0.4
S1 + A 4D4 (2)

1.0
D • BC (3)

1.0
A 4 • AA (4)
‘ 1.0

D4 • B4C4 (5)
I 1.0 ‘ ‘

B4 + BB (6)
‘ 1.0

C • CC (7)1 1.0
A • a4 (8)

1.0
B + a, (9)

1.0
C • a3 (10)

- 
. - .

~~~~~~~~
• - . 

__________________
- . -

- 
S S 

- ~~~~~~ .~~~_•~
_ _ • _.~~s ~ —~ - S 

~~~~~~~~~~ - ~~~~~~~ —--—
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and

G2 = (VN2,VT2,P2,S?
)

VN2 
= CA,B,C,D,A 1,B1,C1,D1

}

V12 = {b1,b2,b3
}

0.8
S, • AD (1)
~ 0.2

• A 101 (2)
1.3

D • BC (3)
1.0
• AA (4)

1.0
• B C 4 (5)

1.0 1 p

B4 • SB (6)
1.0

C4 • CC (7)
1.0

A • b (8)
1.0

B • b, (9)
1.0

C + b3 
(10) .

To use the Bayes SPECP of Algorithm I for i l lustrat ive purpose, the

above two grammars are inferred in their context—free forms, althoug h

simpler finite—state grammars can certainly be used. They are also in Chom—

sky normal form .

Now assume that each pattern W .j j  (i = 1,2, j = 1,2) is subject to both

syntactic and semantic local defo rmations such that each line segment ii

is defo rmed independently. The semantic local defo rmation is induced only

on the direction of each line segment. And each line segment can be sy ntac -~
t ica l ly  deformed into a curve segment with a f ixed . curvature and a f i x e~~

length but with a variable direction. So we can use the 2—tup le (L,I~ and

(C,e) to characterize the pure pr imitives — line segments, and the deformed

primitives — curve segments, respectively, where I and C are syntactic sym— 

~~~~~~ -~~~~~~~~

- -
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bols, and a denotes the one—dimensional semantic vector ——— the direction of

the primitives with respect to x—axis. So we have all the 2—tuples for the

pure primitives shown in Fig . 1(c) as

a
1 

= (L,30°) b1 = (L,0°)

a2 = (L,150°) b2 = (L,120°)

a3 = (L,270°) b1 = (L,240°)

And we assume that each a 1 (i = 1,2,3) can be deformed syntactically into a

curve segment with probability 0.1, and that each b1 (i = 1,2,3) can be de-

formed syntactically into a curve segment with probability 0.13. Further-

more, each line or curve segment is semantically deformed on its direction a

approximately with a normal distribution as shown in the following data (for

notation, see Sec. 2.5):

D = {a~1 = a1 = (L
~

O a ) , a~2 = (C FO a )}

where e a = 300 
+ (i—I ) 120°

with P(a
~i

Ia 1
) = 0.9 , p(a 12~a1

) = 0.1

i = 1,2,3.

Db = Cb11 = b1 = (L,eb
) , b12 = (C4P Ob

))

where 0b. = (I—I ) ‘ - 120°

with P(b11 1b 1) = 0.87 , p(b11 1b1
) = 0.13

i = 1 ,2,3.

-5 — ~~~‘- —•—~.I-.’---—---- -

S —- - - • _ ~~~55~- 5 ,.5 - - - . .
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Daij 
= {a1~ k Ia l~ k = (S

~
,ek) 1a~ 

— oa I -

~~ 400t}

where

i = 1,2,3, j = 1,2,
S~ = I when j = 1 -

= C when j = 2 ,
and

lOk — 6 1 2
= EXPE— •

~i_ ~ 

1.j ]

wi th

= 8° °a
~ 

= 30° + (i—i ) • 120°

= {bijk lb ijk = (Sj~
ok) ~ 

— Gb I ~~4 0 }  -

.

where I = 1,2,3 , j = 1,2,
S~~= L  when i 1

C when j = 2 ,

and

fek - .0 b.12
= 

“s °b 
EXPC— 

2[ °b 

~
j ~

tMathematlcat [~ there is no limitat ion on the value of 8k’ but for com-putational convenience, let’s assume so.

— 4._ _ _ _ _ _ _  
— -~~~~~~ -— 

-4- - -- - - ~~~~~~~~~~~~~~~
- ~~— ,—p-’~~~
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~~~
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and

= ~o °b. = (i—i ) • 1200

The 6 semi—pure primitives , i.e., the 6 curve segments corresponding to

a12, a22, a32, and b12, b22, b32 are shown in Fig. 2(a). Two possible ob-

served patterns deformed from i~~, w
2 

are shown in Fig. 2(b) and Fig. 2(c),

respectively.

~~~~~~~~~~~~~ 
- c

5
a12 a~~ 

~
-:32
,

‘—5---
, 

~ 
- 

Cl C
2

b12 b22 b32
Fi~.2(a) - i?ig.2(b) I~i~.2(c)

Now suppose we want to c lass i fy  the deformed pattern to ’ shown in Fig.

2(c) with the following string representation:

to = c1c2c3c4c5c6

where

c1 = (L,15°), c4 = (L,1350) ,

c2 = (C,15°), c5 = (L,255°) ,

c3 = (C,135°), c6 = (C,2550)

At first, we appl y the Bayes SPECP for grammar G1 and G2 to w ’ respectively,

by using the algorithm proposed in Sec. 3.3. When finished, we get the fol— 

~~--  __
~1— --

— -  S — - - - ~~~~~~~~~
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low ing two parse tables Ti, 12 for Gi and 62, respectively. Since is in

t
16 of T~, and S2 in t 16 of 12, w ’ is accepted by classes C1 and C2 with

minimum Bayes distances d1 = 36.68 and d2 = 34.19, respectively.

(5i,36.68,2) 
- 

-

•

• (D1,23.84,5) -

• • •
(A 1,li.92,4) • (B1, 11.92,6) (C1,11.92,7) 

-

~~~~~~~~~~

_______

(A,4..86,8) (A,7.06,8) (B,7.06,9) (C,4.86,9) (C,4.86,10) (C,7.06,10) !

(Parse Table T
~

(S 2,34.19,2)

•

• • (D1,21.72,5)

• • •
(A 1,10.86,4) • (Bi,10.86,6) 

______— 

(C1,10.86.7) 
___________

(A,4.48,8) (A,6.38,8) (8,6.38,9) (8,4.48,9) (C,4.48,1O) (C,6.38,10)
J

(Parse Table 12) - ;

Next, we apply the interctass Bayes decision rul e to get

__________ - - - - -  _ *5._ 

S- -S - 
be.— —
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P(C1 1w ’) = p(u’1C 1)P(C1
)

= EXP(—36.68) 0.5

= 5.88 x

P(C 2 1w ’) = EXP (—34.19) • 0.5

= 70.87 x

So we decide that to ’ belongs to C2. This completes our i l lustrat ive example

for the proposed Bayes error—correcti ng recognition system.

In the following , we threshold the continuous a values into intervals

as is usually done by other error—correcting schemes, and show how contrary

decision can be made for the previous input pattern to’ . Since the proposed

Bayes recognition system always gives optimum decision in the Bayes sense,

we thus have shown its better performance than other systems using thres—

holding approaches on continuous sematic information.

If we threshold a values starting from c~°~ in steps of - 
200 for class

C1, and from 3O~~ in steps of 20° for C2, then Da and Db can be changed 
-

.

to the followi ng:

Daij 
= {a1~ k IK = 1,2,3,4, a1~ R = 

~
5j ’°K~’ 

(K—2)’20° < < (K—1)’20°}

with discrete probabilities

0.01, K = 1,4
= 0.49, K = 2,3,

tStarting from different points to threshold is just for convenience,
because the direc t ions for a1, b1 are 0 and 300.

~~~~~~ -.v 
— 

~
- —

~~~~~
---
~ - 5~~~~ -5-~~~~
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Db = {bijk lK = 1,2,3,4, bi ik  = (S
),eK
), (K—2 ) ’20° 

~ 
6 K 0b1 

< (K—1)•20 °}

with discrete probabilities

0.02, K = 1,4
= 0.48, K = 2,3,

with S. the same as defined previously. And by convention, only the follow-

ing probability va l ues are used in parsing [3]:

0.009, j = 1, K = 1,4

0.441, j = 1, K = 2,3
i%(a

~~k Ia~
) = ~(a 1J~ Ia 1)a)1 P(a 1~

Ia
~
) = 0.001, j = 2, K = 1,4

0.049, j = 2, K = 2,3

0.0174, j = 1, K = 1,4
0.4176, j = 1, K = 2,3

r$ (b I~ k Ib~
) = Q(bjjk Ib i4b1~’ 

P(b1~ Ib 1) = 0.0026, j = 2, K = 1,4

0.0624, j = 2, K = 2,3

i = 1,2,3. The previous data shows that each a
~ 

or b1 can be deformed into

8 dif ferent observed primitives with different probabilities, in which four

are line segments and the other four are curve segments.

Now again use the Bayes SPECP proposed in Sec. 3.3 for G1, 62 to parse

w , respectively. Note that after thresholding the 0 values in to ’ and

transfo rming into string representations, we get

= a113a123a223a213a313a323 
- 

I
for class C1, or

= b112b122b222b212b312b322

for c lass C2. Also note that the term [In P(s 1~t~
) + an ~~~~~~~~~~ in Al—

_ _ _ _  —

S 

- ~~~~~~~~~~~~~~~~~~~~
-
~~~~~~~~~~~— - - 

-5 - ‘  - -
~~~~~~~~~~~~~
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gorithm 1 should be replaced by an ,E(c.Ia.) before the algorithm is applied

to our discrete case here, where c. = a.. or b.. now.
1 ijk

(S1,12.44,2)

• $

• (D1,7.68.5)

• • • 
(A 1,3.84,4) • (B1,3.84,6) • (C 1,3.84,7)-t — —________________________ 

—-— ______

(A ,0.82,8) (A,3.02,8) (8,3.02,9) (B,0.82,9) (C,0.82,10) (C,3.02,10)

(Parse Table T
~

(S
2~
i2.53

~~
J ________ - 

-

• • (D1,7.28,5)

• • •
—

~~

(A 1 3.64,4) 
- 

(B1 3.64,6) 
- 

• (C 1,3.64,7)

(A,O.87,8) (A,2.77,8) (B,2.77,9) (B,0.87.9) •(C,0.87.10) ’(C,2.77,iO.~

(Parse Table T2
)

From the above tables, we get

___________________ — ~~~~~— —~~.-.-—.-———----— — —
S 

- - -
~~ 

- 
~x_--_,__ . -5- - - -
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P(C1 1w ’) = EX P(—12.44 ) • 0.5

= 1.98 x itf6

P(C 2 (w ’) = EXP(— 12.53 ) • 0.5

= 1.81 x 10~~

So we decide to ’ be longs to C1!

A careful study reveals that such contrary conclusion to the previous

Bayesian decision to ’ • C2 is due to the rough thresholding used. Using

smaller intervals in threshol ding will improve the result, but never be

better than our proposed system which has minimum probabili ty of errors for

recognition of primitiv es due to the use of the Bayes rule in the error—

correcting parser.

~~~~~~~~~ - -~~~~~
--S--  S. - - -  --5-
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5. Concluding Remarks

Bayes error—correcting recognition systems using Bayes error—correcting

parsers and Bayes interclass decision rule have been proposed both by Fung

and Fu (18] and by Lu and Fu [20] . The proposed system in this report can

be considered, from the viewpoint of local deformations, as a generalization

of theirs in the aspect of semantic information, which is more reLevant for

practical pattern classifications where both structural and numerical infor—

mation~s are available for primitive discrimination , as emphasized by several

investigators [13,19,6]. Further investigations should be directed to in-

clude error—correcting capability for structural deformations under the for-

malism of the proposed deformational model and thus set up a more complete

error—correcting recognition system for more practical applications.

I
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